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Società Italiana di Fisica
Springer-Verlag 1999

Corrective measures in turbulent pipe flows and extended
self-similarity

M.S. Johansen, P. Alstrom, J. Borg, and M.T. Levinsena

Center for Chaos and Turbulence Studies, The Niels Bohr Institute Blegdamsvej 17, 2100 Copenhagen Ø, Denmark

Received 5 August 1998 and Received in final form 21 December 1998

Abstract. Significant statistical bias in LDA measurements and how to adequately deal with it is a subtle
problem when dealing with turbulent flows. In order to attempt a clarification we have performed mea-
surements on a non-standard “grid experiment” where a clear bias effect is found. We have investigated
the effect of several corrective measures and find that best results, in the sense of having the first moment
converge to zero, are obtained when using the time between events as statistical weights. The corrected
time series have been used to check for extended self-similarity (ESS). Even though no scaling regime is
seen for the third moment and the flow certainly is neither isotropic nor homogeneous, perfect ESS scaling
based on the absolute third moment is observed up to the twelfth moment, extending into a time domain
regime where the Taylor hypothesis of frozen turbulence is obviously violated. Reversing the argument this
indicates that the correction scheme needed can be experimentally decided on using the criterion stated
above and especially so if ESS is to be expected. Finally we have used the corrected data to quantify
the deviations from Gaussian behavior of the velocity difference probability density function for a weakly
turbulent flow. Through comparison with results on the Gaussian-Lorentzian distribution we find that the
even part of the experimental distribution can be reproduced quite well by a single-parameter family of
distributions with second moment equal unity.

PACS. 42.79.Qx Range finders, remote sensing devices; laser Doppler velocimeters, SAR, and LIDAR –
47.80.+v Instrumentation for fluid dynamics – 47.27.-i Turbulent flows, convection, and heat transfer

1 Introduction

Even though the non-intrusive Laser Doppler Anemom-
etry (LDA) technique for measuring fluid flow velocities
has been around for quite a few years, it remains a diffi-
cult question how to deal with the problem of a significant
bias in the datapoints acquired [1–7]. The LDA technique
is based upon detecting light scattered from particles sup-
posed to follow the flow. Thus obviously the datapoints
are separated in time by intervals of random length de-
termined by the spatial distance between scattering parti-
cles. The argument suggesting a bias effect is very simple.
Under the assumption that the scattering particles are ho-
mogeneously distributed, in a non-stationary flow on the
average more fluid and thus more particles per unit time
will pass the measuring volume when the flow velocity is
high than when it is low. If the scattering particles are not
homogeneously distributed and especially if the particle
distribution is itself correlated with the instantaneous ve-
locity the problem gets even more complicated. Different
schemes for dealing with the problem have been suggested
and investigated by comparing with the result of extensive
computer simulations. However, no all-embracing method
has so far been developed.
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Usually the statistical properties of a flow is studied
by considering the distribution of velocity differences in
two points over a given distance in space or time (the lat-
ter mostly being the case in experiments where the Taylor
hypothesis of frozen turbulence is invoked if converting
to space). These distributions are often explored through
their moments and their variation with the distance sep-
arating the two points. Ideally one would like to have a
signal that can be considered continuous on the time scale
of typical velocity changes. However, with the LDA mea-
surements this is normally not the case. Thus some in-
terpolation scheme has to be involved in the treatment of
time series. Compensation for eventual bias therefore in-
cludes a choice of an interpolation scheme together with
a choice of how to weight the individual datapoints.

LDA measurements have been used extensively to
study turbulent flows; also at high Reynolds numbers
(Re), where the Kolmogorov theory of isotropic homo-
geneous turbulence (K41) [8] has a central place. The
K41 theory seeks to predict the scaling behavior of the
moments of the distribution of velocity differences, and
much experimental work has gone into testing its validity.
There is now general agreement that K41 does not give
the correct scaling behavior for the moments, except for
the third moment.
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Turbulence at low Reynolds numbers has not received
quite the same attention as high Re flows. A key no-
tion in the K41 description is that turbulence is strong
enough that small scales are well separated from the large
injection scales. As the latter scales are determined by
the details of the experiment, the presence of universal
scaling behavior in low Reynolds number experiments is
a question. In turbulence studies, the form of the veloc-
ity difference probability density functions (PDFs) ρ(u)
at different scales r is considered, as well as the mo-
ments, 〈u(r)n〉 ≡

∫∞
−∞ u

nρ(u)du, or the absolute mo-
ments, 〈|u(r)|n〉 ≡

∫∞
−∞ |u|nρ(u)du. The moments are typ-

ically examined as a function of the scale r, in search for a
possible scaling regime, where the moments follow a scal-
ing law,

〈|u(r)|n〉 ' cnrζn . (1)

A new approach called Extended Self Similarity (ESS) has
shown that it is possible to obtain relative scaling expo-
nents at low Reynolds number by plotting moments of
different order against each other in log-log plots instead
of plotting them as a function of the separation r [9].

In order to study the validity of different correction
schemes, we have applied them to time series obtained
from a weakly turbulent flow created by placing a grid in
a pipe flow. As a criterion for the best scheme we have used
that the first structure function should be zero and that
the third structure function should approach zero for large
times (or distances). Having decided on the best scheme,
we have then considered ESS. Intriguingly, we find that
the data show perfect ESS even though the flow is far
from what is traditionally considered a grid flow, the flow
being spatially inhomogeneous due to a low number of
grids. In some studies of ESS a scaling regime has been
seen for the third moment, and the third and the absolute
third moment are found to be proportional. Such a regime
is completely absent in our measurements. Moreover, our
measurements suggest that the correct moment to scale
with in ESS is the absolute third moment, rather than the
third moment. This is corroborated by a recent computer
simulation [10]. One may speculate that ESS may be used
as an instrument to check whether a proper correction for
bias effects have been performed.

Due to the lack of analytical expressions for the form
of the velocity difference probability density functions
(PDFs) in turbulent fluids, a number of phenomenological
models [11–17] have been suggested as useful approxima-
tions to the non-Gaussian shaped PDFs. The models have
particularly been examined to account for the intermittent
behavior in turbulent fluids [18] often related with the tails
of the PDFs. In this paper, we are concerned with low Re
flows, and therefore with the central deviations from the
Gaussian behavior, rather than the tail structure. In or-
der to examine the central part of the PDFs, we apply
the two-parameter Gaussian-Lorentzian approximation to
our experimental results. This method of quantifying the
deviations from Gaussian behavior at low Re has previ-
ously been used to fit experiments attempting to check
the Taylor hypothesis [19].
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pump
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Fig. 1. Overview of the pressure driven flow experiment show-
ing the water recirculation system.

Because the Gaussian-Lorentzian distribution is even,
it can only be used as an approximation for the even part
of the velocity difference PDF, and we shall only consider
the absolute moments (the odd moments otherwise being
zero). By rescaling velocities with the second moment we
are left with a one-parameter family. As a surprising result
of our analysis, the data obtained strongly suggest that a
one-parameter (rescaled) family of PDF’s (although not
the Gaussian-Lorentzian distribution) may simulate the
even part of the PDFs in the regime studied.

2 The grid flow experiment

2.1 The flow

A well known mechanism for generating homogeneous and
isotropic turbulence is to place a grid in a laminar flow
[20]. At high enough Reynolds numbers this will generate
vortices of a size comparable to that of the rods in the grid.
In the present experiment a grid consisting of four stainless
steel rods (2 by 2 in parallel) is used as the turbulence
generating obstacle. The grid is placed in a glass pipe of
inner diameter 6 cm. The rods have a diameter of 10 mm
and the spacing between the axes of the rods is 20 mm.
This gives a solidity of the grid of 75%. The resulting
flow is not what one traditionally characterizes as grid
generated turbulence. For this the grid should consist of
at least an order of magnitude more rods. However, we
are here concerned with how to overcome possible biasing
effects, and the possibility of ESS in an anisotropic and
inhomogeneous case.

Nevertheless, we do want to be able to change the
properties of the flow in a controlled way. The entrance
section of the pipe is therefore filled with straws of diam-
eter 6 mm and length 185 mm, in order to create a nearly
laminar flow. As the length to diameter ratio is about
70, the velocity profile is still nearly flat at the outlet of
the straws. After the straws the flat profile is maintained
for the length of the pipe leading to the grid. The glass
pipe consist of two 150 cm sections with the grid placed
at the intersection. As the diameter of the straws is a fac-
tor of ten smaller than that of the pipe, so is the Reynolds
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Fig. 2. Sketch of the optical system to produce the measuring
volume.

number in the straws compared to that of the bare pipe.
This lowering of the Reynolds number effectively kills the
turbulence at the entry for the Reynolds numbers in the
experiment.

The pipe is placed horizontally between two large con-
tainers each 65 cm in diameter and 90 cm in height. Fig-
ure 1 shows an overview of the feeding system. We use
a pressure driven flow. Water is pumped from the lower
reservoir container into the feed container by a Grund-
foss model KP350-1 pump with a minimum capacity of
13.5 m3 per hour. A shunt is used to regulate the pump-
ing rate. The receiving container is fitted with an overflow
funnel to keep the level constant. A valve at the outlet of
the funnel gives a steady flow into the lower container to
minimize the creation of bubbles by sloshing water. Even
at the highest rate the water spends at least 30 seconds
on the average in this container – enough for most visi-
ble bubbles to rize to the surface. As the visible bubbles
are large (compared to the fringe spacing), they will de-
stroy the quality of the Doppler signal rather than serve
as scattering particles. The T-shaped entry into the feed
container minimizes the amount of turbulence created in
this container and no visible bubbles are present. The fluc-
tuations of the surface in the feed container is of the order
of 1 mm even with a flow velocity of 1 m/s in the pipe
corresponding to a flow rate of close to 3 l/s. As the water
level is about 60 cm at this rate, the fluctuations are less
than 0.15% . The flow rate in the system could be adjusted
by the shunt in the lower reservoir to within 0.01 m/s of
a desired value. The stability of the mean flow is better
than 0.3% per hour as checked by the time series obtained
by the LDA system.

2.2 Optical part

The velocity was measured using a conventional LDA sys-
tem based on the Dantec 58N20 correlation analyzer. A
sketch of the optical setup is shown in Figure 2. The laser
used is an Ion Laser Technology model 5500A, a 514.5 nm
argon-ion laser with 200 mW output and 0.82 mm Gaus-
sian beam diameter. The focusing lens has a 120 mm fo-
cal length and the measurements are done in the nearly-
forward scattering mode. A rectangular box filled with
water is placed around the pipe to minimize the optical
distortion from the curved surface. The scattered signal
is collected by an RCA 4536 photomultiplier tube. The
Bragg cell could be driven by a fixed 40 MHz signal from
the Dantec analyzer, but in these experiments a Philips
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Fig. 3. Timeseries recorded just before the grid (upper trace
and shifted upwards by 0.5 m/s) and 23 cm after the grid (lower
trace).

PM 5193 synthesizer was used in order to tune the ana-
lyzer measuring window to better accommodate the signal
bandwidth. The combination chosen was a compromise
between obtaining the highest possible data rate (with a
high validation) but retaining a velocity resolution better
than 1%. With typical data rates around 1-2 kHz, a reso-
lution of 1 µs for the arrival time was deemed sufficient.

In many applications of LDA the flow is seeded with
small particles that act as scattering agents. In the present
experiment this proved not to be necessary, probably due
to the size and density of microscopic bubbles in the flow.
By monitoring the burst envelope on an oscilloscope, it
was easily verified that the distance between bursts com-
pared with the width of the bursts would make it difficult
to increase the density of scattering particles without at
the same time increasing the probability of finding more
than one particle in the scattering volume. This would
result in a decrease of validation. It is a common experi-
ence that in recirculating flows it is often unnecessary to
seed the flow as the bubbles naturally existing in the flow
ensure a sufficient data rate [21].

2.3 The flow before the grid

As explained, some care has been taken to ensure that
the flow is laminar before the grid. With a mean flow of
1 m/s the Reynolds number in the straw section is about
6 000. Thus the flow should be laminar. As the flow leaves
this section the diameter changes by a factor of 10 and
consequently the Reynolds number to 60 000. However,
for the boundary created turbulence to reach the center of
the pipe, the aspect ratio (length to diameter) should be of
the order 50-100. In the present system the ratio is about
20, leading one to expect the flow still to be more or less
laminar just before the grid. This was checked by making a
comparison (at 1.03 m/s) between a time series taken just
before the grid and one taken 23 cm downstream from
the grid. The two time series are displayed in Figure 3
with the data taken before the grid displaced upwards by
0.5 m/s for clarity. It is clearly visible that the flow is
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Fig. 4. Density of ∆u/∆t.

much more turbulent after the grid and if not completely
laminar before at least very close to. We therefore conclude
that the relevant Reynolds number to use to characterize
the flow is the one based on the diameter of the rods.

2.4 Velocity gradients

Measurements with the LDA technique are based on the
assumption that the velocity of the scattering particle is
constant during the crossing of the measuring volume.
With turbulent flows this need not be the case, and one
may suspect large fluctuations in the Doppler frequency
to give imprecise measurements. We have no way to eval-
uate rapid small scale fluctuations, but on a larger scale
the size of the fluctuations can be evaluated. In Figure 4
the PDF of the velocity time derivative ∆u/∆t is shown
for the turbulent time series shown above in Figure 3.
This is seen to have values up to 250 m/s2 (99% is ac-
tually below this). With a mean transit time of 0.2 ms,
this corresponds to a change in velocity of 0.05 m/s or a
5% change in frequency during the burst. From this we
conclude that velocity changes during the transit of the
measurement volume do not pose any problem.

All measurements in what follows are taken 23 cm
downstream. The pressure difference was adjusted such
that the mean flow velocity U in the center of the pipe
varied between 40 and 105 cm/s. Thus, the Reynolds num-
ber Re = Ud/v (v = 0.01 cm2/s being the kinematic
viscosity of water) lies between 4 000 and 10 500. Only
the velocity component along the pipe axis was measured.
The velocity difference PDFs were obtained from the data
record as function of time; invoking the Taylor hypothesis,
r = Ut, they may be turned into functions of space. The
maximum turbulence intensity was about 10%. The data
rate was about 1.5 kHz, and 60 min of data was recorded
for each Reynolds number (∼ 5 × 106 data points). In
this connection let us mention that we have checked that
the average velocity and turbulence intensity is constant
across the tube except very close to the wall but the tur-
bulence intensity is decaying significantly along the tube,
the width of the velocity distribution being nearly halved
at a further distance of 25 cm downstream.

3 Bias effects and methods of data analysis

3.1 The problem of statistical bias

As already mentioned above the argument suggesting a
bias effect is very simple: Under the assumption that the
scattering particles (whether they be seeding particles,
bubbles or just dust) are homogeneously distributed in
the liquid [22], in a non stationary flow one will experi-
ence a statistical bias due to the fact that on the average
at high velocities more water and thereby more particles
will flow through the measuring volume per unit time than
at low velocities.

If the measuring volume is of size V and has the front
area A(v) perpendicular to the instantaneous direction of
the flow, then the number of particles ∆N present in the
volume that can provide a datapoint during the time ∆t
will be given by

∆N = ρA(v)v∆t. (2)

Here ρ is the density of the scattering particles. Note that
it is the size v of the instantaneous velocity v and not the
measured component that enters into this expression. It is
clear that the number of measurements is linearly depen-
dent upon the three-dimensional velocity for a spherical
measuring volume. In other words: in any time series there
will be more (and more closely spaced) points at high ve-
locities than at low. A simple average of these points will
therefore give too high a mean value. For a non-spherical
measuring volume the situation is more complicated, but
a bias effect will still be present.

Based on the considerations above, McLaughlin and
Tiedermann [23] suggested to use the measured compo-
nent u as a statistical weight in the calculation of mean
values. This is not without problems because one often
lacks the spatial information that is necessary for a com-
plete correction. McLaughlin and Tiedermann analysed a
model where the measuring volume is spherical and the
velocity fluctuations have a Gaussian distribution. With
these assumptions numerical simulations show that the
weighted sum is a good approximation to the real mean
value. In actual cases the method works quite well for low
intensity turbulence if more than one velocity component
is known [3] even when the assumptions used in the orig-
inal analysis are not met.

As indicated by equation (2) the data rate is to a first
approximation linear in the velocity of the fluid as it passes
through the measuring volume. As argued above it is the
full three-dimensional velocity that is needed for a com-
plete correction, but here we only have access to one of the
components. The LDA analyser output, however, contains
an additional parameter, the transit time (henceforth de-
noted tT) which is ideally the time it takes the particle to
travel through the measuring volume, and is estimated
from the width of the Doppler burst. Weighting with
the transit time is suggested by Buchhave et al. [1] who
claims that the statistics are correctly produced with this
weight. This method has since been proven to give good re-
sults by many experiments and computer simulations (see
e.g. [4,5]) for all data rates.
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In the above discussion, the data rate at the arrival
time of particles plays a central role. It therefore seems
interesting to use the instantaneous data rate as a statis-
tical weight. If the data points are evenly spaced in time,
the data rate is just the inverse of the time between parti-
cles. This method has also been extensively evaluated and
shown to work if the data rate is high. Compared to the
inverse integral time scale [2,3,5], in our experiments of
the order of 100 Hz, our data rates are high (about 2 kHz).

However, other sources of bias can be present in a given
experiment. Most relevant for a circulating flow is the
question of non-homogeneous particle density. This be-
comes especially worrisome if the particle rate becomes
dependent on the instantaneous velocity. The effect is
treated in reference [2] and in detail in reference [5]
through computer simulations. In reference [3] it is shown
that weighting with the time between arrival most effec-
tively removes the bias for all data rates, while weighting
with the transit time on the other hand results in devia-
tions that depend on the data rate and on the correlation
(whether positive or negative) between the instantaneous
velocity and particle rate.

To actually check whether a calculated average is in
accordance with the true mean, some kind of calibration
with respect to the given flow is required. This is not al-
ways easy or even possible, so here we shall employ an-
other method to evaluate the different weighting methods.

Instead of focusing upon the mean value of the signal
we shall use the velocity difference over the time τ ,

∆uτ (t) = u(t)− u(t+ τ). (3)

If this is averaged over time, it is identical to the first or-
der structure function S1(τ) which should disappear iden-
tically for all values of τ .

To see the effects of bias on the value of S1(τ) we must
consider how this is calculated in practice. Since the dis-
tance between data points is randomly distributed, it is in
general quite unlikely that a data point will exist at time
t + τ (or in a reasonably small neighborhood around it)
if one exists at time t. One is then left with the choice
of either skipping this point or constructing a data point
by some interpolation scheme. Discarding the data is gen-
erally not desirable since as many points as possible are
necessary in order to improve statistics. If the data rate
is high enough to give an almost continuous time series,
one could consider creating a smooth curve through the
points close to the time where a data point is desired for
instance by a cubic spline. With the data rate achieved in
the present experiment, such an approach is unjustified.

We have considered three different interpolation
schemes

– linear interpolation between the data points immedi-
ately before and after the time t + τ . This amounts
to approximating the real time series with a function
that is piecewise linear between the data points;

– sample and hold where the value of the velocity is cho-
sen as that of the last point before time t+ τ ;

– closest point where the data point that is closest in
time is used for the value of u(t+ τ).
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Fig. 5. The first order structure function S1(τ ) obtained ex-
perimentally without weighting data.

While these schemes all have obvious drawbacks we have
settled on using the first since the bias only affects the
starting point. In this way the continuous ∆u = u(t) −
u(t+τ) is replaced by the discrete ∆uτ (ti) = uti−uint(ti+
τ) where ti are the (discrete) arrival times of the particles,
and uint is the interpolated value. Now returning to the
possible bias, it is important to note that this method of
calculating ∆u(t) always uses an existing data point as
the starting point. This will result in an overrepresenta-
tion of points with a high velocity. At a later time t + τ
the flow will on the average have a higher possibility of a
velocity, that is lower than at the starting point, since the
velocity at t + τ is constructed by interpolation, and the
expectation value of u(t+ τ) therefore does not have any
dependence of the data rate at time t+τ . This leads to an
overrepresentation of positive velocity differences, mean-
ing that S1(τ) = 〈∆uτ (t)〉 will be positive if no corrective
action is undertaken.

Figure 5 shows S1(τ) calculated by a simple arithmetic
mean,

S1(τ) =
1
N

∑
i

[u(ti)− uint(ti + τ)], (4)

i.e. without taking bias into account (N is the number of
data points). It is evident that the first order structure
function obtains a finite positive value, and for large τ
a constant level is reached. This is in contrast with the
requirement that S1 = 0. Thus some degree of bias is
truly present. The average flow velocity is 1.03 m/s, and
a turbulent intensity of 10% is present, so typical fluctua-
tions will be of the size of 0.1 m/s. Compared to this, the
mean value of ∆uτ of 0.005 m/s (as seen from the graph)
is significant. The interpolation scheme might as well use
an existing data point as the end point and interpolate
for the starting point. This will, for the reasons stated
above, on the average lead to an overrepresentation of neg-
ative velocity differences. Even the first moment will there-
fore be different calculated by the two choices. The ac-
tual moments presented below are calculated as the mean
of the moments obtained by the two choices, even though
for clarity this is not explicitly stated in the following.
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Fig. 6. S1(τ ) calculated with time-between-particles weight
and without weight. The thin line is the unweighted values.
The weighted values are shown by black dots. The time axis is
logarithmic but S1 is on linear scale.

3.2 Weighting methods

Although the calculation of the first order structure func-
tion provides us with a way to check whether the statistics
is biased, it does not provide us with a method to correct
for the bias. Different schemes have been proposed, the
most important being weighting with the time between
samples and weighting with the time it takes the particle
to cross the measuring volume as discussed above. Gen-
erally interest has centered on mean values such as the
mean velocity, and it is often found (see e.g. [3]) that bias
is present, but not significant. Here we concentrate on the
moments, and even a small bias is significant.

3.2.1 Time between particles weight

As mentioned in Section 3.1, it seems interesting to use
the instantaneous data rate as a statistical weight; if the
data points are evenly spaced in time, the data rate is
just the inverse of the time between particles. Of course
the data are not evenly spaced but a good measure of the
data rate is the inverse of∆ti = 1

2 (ti−ti−1)+ 1
2 (ti+1−ti) =

1
2 (ti+1−ti−1), i.e. half the time between the adjacent data
points.

Using ∆ti as the statistical weight, we can then esti-
mate the structure functions by

Sn(τ) =
∑
i[u(ti)− uint (ti + τ)]n∆ti∑

i∆ti
, (5)

where uint is constructed by the first interpolation
method. Figure 6 shows S1(τ) calculated by equation (5),
and in comparison S1(τ) calculated by equation (4)
(Fig. 5), where bias is not taken into account.

In contrast to the unweighted values that approach
a constant value for higher τ -values, the weighted values
are zero with just small deviations oscillating around zero.
This may be taken as a sign that the method works.
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Fig. 7. S1 with transit time weight (black circles) and without
weight (thin line).

3.2.2 Transit time weight

From equation (2) we see that for a particle moving with
velocity v the waiting time for the next particle to arrive
is on average (ρA(v)v)−1. The product A(v)v is propor-
tional to the measured velocity component u. This sug-
gests that the transit time ∆tT ∼ u−1 is a relevant cor-
rection weight in calculating the moments. Figure 7 shows
how S1(τ) behaves compared to the unweighted estimate.
It is seen that the use of the transit time weight does not
move S1(τ) closer to zero, as one would have expected.
For our experimental situation, S1(τ) is now negative and
even further from zero than the unweighted moment. Al-
though the transit time method has shown useful for other
flows, the method is seen not to correct for the bias under
our experimental conditions.

Another possibility is weighting with the overlap time
where there are single particles simultaneously in both the
volumes around time ti and ti + τ [1]. This is such a rare
coincidence, that the method gives very poor statistics.
Therefore it has not been possible to evaluate its potential
in the present experiment.

3.2.3 Double time-between-particles weight

Both methods described above depend upon procedures
used to constructing values by interpolation between ac-
tual data points. A different approach is to use actual
data points as basis for the calculation. Here all available
pair of points are used to compute their timeseparations
τij = ti − tj . The corresponding products are then calcu-
lated, sorted into time lag bins, and the relevant moments
calculated for each bin. A finite bin width will still intro-
duce an interpolation error related to scheme 3. To mini-
mize this error, the bin width has to be of the order of the
average transit time. However, the number of ∆uτ values
obtained in a given bin from a time series will be relatively
low resulting in an increased scatter. Although choosing a
larger bin width will make the graph look more smooth,
this will affect the resolution of the τ -axis and increase
the effect of the interpolation.
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Fig. 8. S1 calculated with the “double” time-between-particles
weight.

One has to adopt a different weighting, because now
both points are affected by the overrepresentation of high
velocities. Based on the results above, we have chosen to
use the time-between-particles as the basis giving:

Sn(τ) =

∑
i,j [u(ti)− u(tj)]n∆ti∆tj∑

i,j ∆ti∆tj
· (6)

In Figure 8 the result for S1 is shown together with the
unweighted values. Note, that because the data is summed
in bins of a fixed size, the τ -axis is now linear. The ef-
fect of this “double” weight is clearly to bring S1 to the
wanted zero value, but it is obvious that the data is much
more scattered than was the case for the interpolated time-
between-particles weight. This is only what one would ex-
pect on the basis of the reduced number of ∆u values
compared to the previous method and the effect of choos-
ing the same small ∆τ as in the previous analysis.

3.3 Comparison of the weighting methods

As the preceding sections show, the best method for cor-
recting the statistical bias in the present experiment is
by using the time-between-particles weight, which success-
fully gives S1(τ) ≈ 0. This is supported by the “double”
version, which although giving more scatter around zero
has the advantage of being much less dependent on any
interpolation scheme which could obscure the mechanism
behind the correction. In Figure 9 is shown the result of
the different weightings on the calculation of the 3rd or-
der structure function. The three curves are clearly very
different. The one at top is the unweighted value giving a
positive finite value for larger τ . The lowest curve is calcu-
lated using the transit-time weight, giving a negative lim-
iting value for large τ . In between these we find the result
of the calculation using the time-between-particles weight
falling nicely towards zero for large time differences. This
is exactly the behaviour expected as the fluctuations for
large separations must be uncorrelated giving a Gaussian
distribution with all odd moments equal to zero.
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Fig. 9. Different weights applied to the calculation of S3.
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Fig. 10. Different weights applied to the calculation of S3,
using the central moments. Black circles are the time-between-
particles data, the full line is the unweighted data, and the
dashed line shows the transit-time weight data.

As the aforegoing shows, the weighting method has a
significant effect on S1 which should in theory be exactly
zero, but in practice when weighting is taking into account
fluctuates about zero. This suggests that it could be im-
portant to consider the central moments,

Sn(τ) = 〈(∆uτ (t)− S1(τ))n〉, for n > 1. (7)

In Figure 10 the 3rd moment is shown calculated as
central moments by subtracting the mean value S1, as
found by the respective methods, before raising to power
3. The black circles represent the values found by the time-
between-particles weight. Rather closely following this we
see the transit-time weighted data (dashed line) and below
these (some 20% lower) is the unweighted data. It might
seem tempting to conclude that the whole problem of bias
is of little importance, as the different methods seem to
give nearly the same result when applied to the central
moments. This assertion is, however, not a trivial obser-
vation – it can only be made after having tested whether
the data actually contains a significant bias. Also the 20%
deviation in the third moment shows up as a rather no-
ticeable larger deviation for the higher moments. It is,



672 The European Physical Journal B

however, reassuring that the statistics are robust to chang-
ing the weights when the central moments are considered.

An important time scale in the problem is the integral
time scale,

Tint ≡
∫∞

0
dt|〈u′(t)u′(0)〉|
〈u′2〉 , (8)

where u′(t) = u(t)− 〈u(t)〉.
In our case Tint is of the order of 10 ms. For the flow

with mean velocity 1.03 m/s, the average sampling time is
0.54 ms. Thus the normalized data rate is approximately
20. According to reference [5], both the time-between-
particles and the transit-time correction schemes should
be able to correct for the bias if the seeding is homoge-
neous and no other sources of bias are present. However,
from this study it seems clear that for a non-homogeneous
seeding the method to employ is weighting with the time
between arrivals. In the present experiments with a cir-
culating flow, where bubbles are unavoidably created and
participate as scattering particles, it might not be too un-
reasonable to expect the seeding to have a certain degree
of non-homogeneity. Furthermore, one should note that as
pointed out by Tiederman [24], the faster particles may
have a smaller signal to noise ratio. This may result in
underestimating the transit time thus leading to an over-
compensation in the transit time correction scheme, while
not affecting the time-between-particles method. A sec-
ond source related to this may be the degrading of signal
quality if particles are varying in size.

4 Extended self-similarity

In Figure 11 we display the numeric value of some of
the higher moments calculated using the time-between-
particle method discussed above for a mean flow velocity
of U =1.03 m/s (the highest mean velocity obtained in the
experiment). As expected for a regime of low to interme-
diate Reynolds numbers, we find no traces of any scaling
regimes in Figure 11. Despite the fact that the flow is spa-
tially inhomogeneous, we shall analyse our data looking
for ESS by plotting the absolute structure functions S|n|
versus S|3|. These are defined using the absolute veloc-
ity differences in the equation (5) for the structure func-
tion Sn. The resulting plots are shown for two velocities
(Reynold numbers of 10 300 and 5 800) in Figures 12 and
13. To make the data presentable in a single graph, the
data is shifted so that the moments are plotted as S|n|/Un.
This does not affect the slopes of the lines, it only changes
their position. Also the data for Re = 10 300 are shifted
up by a factor of 1.2, to be able to distinguish them from
the Re = 5 800 data.
For n = 2, 6, 7, 10 the slopes obtained are shown as thick
lines over the appropriate range. The values found (least-
square fitting) are shown as ζ∗n in Table 1. The quality
of the scaling relation is rather good, e.g. S2 as a function
of S|3| (Fig. 14) deviates from a powerlaw by less than
0.3% in the range from 1 ms to 100 ms.
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Fig. 11. Sn for n = 2, 3, 4, 5, 6 for Re =10 200.
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For comparison, Table 1 also lists the values of ζ∗n
found by Benzi et al. [9]. The agreement is good, the dif-
ference being nowhere more than 2%. Also in the table are
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Fig. 14. S2 versus S|3| for 7 velocities, plotted without rescal-
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Fig. 15. The 3rd order structure function versus the absolute
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the data of a low Re experiment by Esposito et al. [25] in
a pipe flow without a grid, and with measurements taken
100 diameters downstream.

A quantity often used to characterize flows is the
Taylor-scale based Reynolds number

ReTaylor =
〈(u(t))2〉λTaylor

v
, (9)

with the Taylor microscale λTaylor defined by

1
λ2

Taylor

=
〈(∂u(t)/∂x)2〉
〈(u(t))2〉 · (10)

The Taylor microscale can be determined directly by dis-
cretizing the definition and is found to be 1.3 mm for the
flow velocity of 1.03 m/s quoted above. In our experiment
ReTaylor ranged from 60−140 compared to the value of
≈10 in the experiment by Esposito et al. [25].

Extended self similarity as found by Benzi et al. leans
on the observation that S3 and S|3| are proportional over
the range where the relative scaling is found. In Figure 15
the relation between these values are shown, as found in
the experiment. It is easily seen, that the individual graphs

Table 1. Scaling parameters obtained compared to those of
Benzi et al. and Esposito et al. The uncertainty on our data is
on the last decimal as estimated from the quality of the fit by
manually varying ζ∗n, since the uncertainties reported by the
fitting routine were unrealistically low.

n ζ∗n Benzi et al. Esposito et al.
2 0.690 ± 0.001 0.70 0.690 ± 0.001
3 1 1 1
4 1.288 ± 0.001 1.28 1.296 ± 0.001
5 1.555 ± 0.005 1.54
6 1.80 ± 0.01 1.78 1.819 ± 0.005
7 2.04 ± 0.02 2.00
8 2.25 ± 0.02 2.23 2.22 ± 0.02
9 2.46 ± 0.03

10 2.65 ± 0.05 2.60 ± 0.03
11 2.8 ± 0.1
12 3.0 ± 0.1 2.95 ± 0.05
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Fig. 16. The exponent ζ∗n as a function of n. Black circles are
ESS values from the experiment. Crosses are ESS values from
[9] and � are from [26]. Straight line is K41, parabolic K62
with k = 0.02.

show no such proportionality (or power-law behavior). For
lower values of S|3| (corresponding to small τ) they ap-
proach a slope of 1 (shown by a fat line in the figure). For
higher values the graphs dip down towards zero in accor-
dance with the PDF being found to be Gaussian for large
τ (see the following section). Taken together though, the
envelope of the individual graphs has a slope of 1.

The slopes given in Table 1 are clearly differ-
ent from the trivial values n/3. The values are
illustrated in Figure 16, and compared to those
found by Benzi et al. [9]. Also shown in the fig-
ure are data by Anselmet et al. [26]. The straight
line is the K41 n/3 result. The parabolic curve is
the prediction by Obukhov and Kolmogorov [11,12]
with k = 0.02, which is the value obtained inserting
ζ2 = 0.69 in ζ2 = 2/3 + k [12].
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5 Distributions

Having established that the flow does possess scaling in
the ESS-sense, we shall now consider the distributions
themselves. Many models have been suggested as approxi-
mations to the velocity difference probability density func-
tions (PDF’s) for turbulent flows [11–17]. Here we shall
investigate to what extent a two-parameter family of dis-
tributions is able to model the (weakly) turbulent state.
One such family relevant for quantifying the deviations
from Gaussian behavior is the Gaussian-Lorentzian (GL)
distribution [19]. (In what follows u has been substituted
for ∆u for convenience). In this the velocity difference dis-
tribution ρ(u) is expressed as a product of a Gaussian
distribution, ρG(u) ∝ exp[−(u/uG)2], and a Lorentzian
distribution, ρL(u) ∝ [u2 + u2

L]−1,

ρ(u) = N
exp[−(u/uG)2]

u2 + u2
L

. (11)

In the above expression uL = uL(r) and uG = uG(r) are
the characteristic velocities for the two distributions for a
given distance r, and N is a normalization constant assur-
ing that

∫∞
−∞ ρ(u)du = 1. The Gaussian-Lorentzian distri-

bution is an even function. This means that it can only
be used as an approximation for the even part of the ve-
locity difference PDF, and we shall return to this point
below. First, however, we shall consider the quality of the
fit between experimental PDF’s and the GL distribution.

5.1 Quality of the fit

The chosen method of fitting is least squares on linear
scale. This has shown to give the best convergence of the
fit. Fitting the logarithm gave essentially the same results,
but was more sensitive to small fluctuations in the tail of
the PDF.

First we shall consider how well the even part of the
PDF is actually described by the GL-approximation. In
Figure 17 the even part of the experimental PDF and the
corresponding GL-fit is shown for three different values of
τ : 0.3 ms, 1 ms, and 10 ms for the flow with mean velocity
of 1 m/s, but the quality is the same for all velocities. In
these fits the velocity difference u is scaled with the second
moment (u→ u′ = u/〈u2〉1/2). For all three τ values, the
fit is seen to be very good. In fact τ = 0.3 ms is below the
mean separation between data points in the time series
(which is 0.5 ms), so we conclude that the GL-fit is a
good approximation to the central part of the PDF for
time-scales which can be resolved in the experiment. For
τ >10 ms the PDF is still well described by the GL-fit, as
it rapidly becomes indistinguishable from a Gaussian.

If the same data is plotted semi-logarithmically to em-
phasize the tails (see Fig. 18), it is seen that the GL-fit
is good up to u′ = 3, (corresponding to 3 times the vari-
ance in the unscaled PDF). For larger values the fit is no
longer good, underestimating the tails, as the Gaussian
part inevitably ends up dominating. We conclude that the
Gaussian-Lorentzian approximation is a good fit to the
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Fig. 17. PDF and GL-fit for three τ values (0.3 ms, 1 ms and
10 ms). For higher τ the PDF approaches a Gaussian.
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Fig. 18. Data for τ= 1 ms but now plotted semilogarithmic.
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Fig. 19. A double logarithmic plot of ν as a function τ . The
thick line has a slope of 0.36. The Reynolds number is 10300.
The dashed line is an extrapolation of the approximate power
law.

centre of the even part of the velocity differences PDF.
The tails are not described by the model.

The parameter describing the change in the GL dis-
tribution is the ratio ν(τ) = uL/uG [19]. In Figure 19
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this relationship is plotted for Re = 10 300, but no change
in the curve is noticed with the change in Reynolds num-
ber obtained in this experiment. The curve ν(τ) approxi-
mately follows a power-law,

ν(τ) ∝ τ0.36, (12)

for τ in the range 0.5 to 10 ms. In this range ν changes
from 0.5 to 1.5. For larger values of τ the PDF is so close
to being Gaussian that the experimental noise makes a
distinction meaningless.

5.2 Moments

The (absolute) moments for the Gaussian-Lorentzian dis-
tribution function (11) has the following form,

〈|u(r)|n〉 = N

∫ ∞
−∞

|u|n exp[−(u/uG(r))2]
u2 + uL(r)2

du

= Nun−1
L exp[ν(r)2]Γ

(
n+ 1

2

)
Γ

(
1− n

2
, ν(r)2

)
. (13)

In the above formula Γ (α) =
∫∞

0
e−ttα−1dt is the Γ -

function, and Γ (α, x) =
∫∞
x

e−ttα−1dt is the incomplete
Γ -function [27,28]. The normalization constant N can be
determined by setting n = 0.

In rescaled units we find

〈|u′|n〉 =
(

2Γ (1/2, ν2)
Γ (−1/2, ν2)

)n/2 Γ (n+1
2

)
Γ (1/2)

Γ
(

1−n
2 , ν2

)
Γ (1/2, ν2)

·

(14)

By definition 〈|u′|2〉 = 1. The other moments are functions
only of the single parameter ν.

In Figure 20 the rescaled moments 〈|u′|n〉 for n = 3, 4,
and 6 are shown versus ν. The lines correspond to the mo-
ments of the GL model, while the experimental data plot-
ted as points are for Reynolds numbers 10300 and 5800.
The 3rd moment shows overall fine agreement, whereas
the 4th and the 6th moments show increasing discrepancy
for decreasing values of ν (corresponding to the Lorentzian
dominated regime of the PDF). This is caused by the fail-
ure of the Gaussian-Lorentzian distribution to fit the tails
of the experimental distributions.

The GL model distribution does not give a very good
fit to the tails. However, it is a remarkable fact that the
experimental data for all the moments, within experi-
mental uncertainty, fall on unique curves, independent of
Reynolds number. This shows that the even part of the
velocity difference distributions in terms of the rescaled
velocity u′ at least is very close to be determined by a sin-
gle parameter. In Figure 20 this parameter is taken to be
ν, but the parameter used could equally well be one of the
moments (aside from the unit second moment), for exam-
ple the third moment, thus again connecting to extended
self-similarity.

To account for the skewness observed in experimental
data, at least a second parameter is needed.
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Fig. 20. The moments 〈|u′|n〉 in a double-logarithmic plot
versus ν for n = 3, 4, 6. Also the experimentally obtained mo-
ments are plotted for Re = 5 800 (+) and Re = 10 300 (◦).

6 Conclusions

An experiment has been performed on a non-standard
grid-flow at intermediate Reynolds numbers (4 000-
10 000). Laser Doppler Anemometer generated time-series
of flow velocities were found to possess a significant bias.
Such a bias can result from many different causes, both
involving the flow and the electronics.

In many cases a complete control over experimental
parameters is not possible and the correct procedure to
follow to remove the bias therefore not obvious. Using the
criterion that the first moment should in principle be zero,
we have investigated several corrective procedures and find
that for our experiments a very good result is obtained by
weighting with the time between sampled points.

Using this corrective scheme we have looked for ex-
tended self-similarity in the data. However, not entirely
unexpected with such low Reynolds numbers and a flow
that is not homogeneous and isotropic, we do not see any
proportionality between the 3rd order structure function
and the 3rd absolute structure function. Nonetheless, we
still find a very clear scaling of the absolute moments rel-
ative to each other. Here we would like to point to the
experimental finding that it is the absolute third moment
that is the correct moment to use in the scaling, not the
third moment itself. The scaling constants agree surpris-
ingly well with those obtained by other authors even at
high Reynolds numbers. This hints that the relative scal-
ing between the moments is not mediated by a indirect
scaling with the third moment to τ , but is of an even more
fundamental nature. Indeed one might speculate that the
scaling properties usually attributed to fully developed
turbulence are due to fundamental processes and effects
also seen at low Reynolds numbers.

Although the corrective procedure found to work in the
experiment may not be the correct to use in other cases
we wish to stress that it seems possible experimentally to
decide on which method to employ by using the above
criterion and looking for extended self-similarity.
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Due to the lack of analytic results many model dis-
tributions have been suggested as approximations to the
real distributions for turbulent flows. In order to inves-
tigate the deviations from the Gaussian PDF, we have
examined Gaussian-Lorentzian distribution. By rescaling
u with respect to the second moment 〈u2〉, one param-
eter is eliminated, thus leaving a one-parameter family
of Gaussian-Lorentzian distributions. A single parameter
ν characterizes the form of the distribution. Our results
show that the Gaussian-Lorentzian fit to experimental
data works well within approximately 3 standard devi-
ations from the mean but at higher values severely under-
estimates the tails of the distributions.

A remarkable fact is that the experimental moments,
within experimental uncertainty, fall on unique curves, in-
dependent of Reynolds number, when using ν as parame-
ter. This shows that the even part of the velocity difference
distributions in terms of the rescaled velocity u′ at least is
very close to being a single-parameter family of distribu-
tions with second moment equal unity, although not the
Gaussian-Lorentzian family.

One of us (PA) acknowledge financial support from the Novo-
Nordisk Foundation.
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